1,227 research outputs found

    Low temperature behavior of the heavy Fermion Ce3Co4Sn13

    Full text link
    The compound Ce3Co4Sn13 is an extremely heavy cubic heavy fermion system with a low temperature electronic specific heat of order ~4 J/mol-K2. If the compound is nonmagnetic, it would be one of the heaviest nonmagnetic Ce-based heavy fermions reported to date and therefore would be expected to lie extremely close to a quantum critical point. However, a broad peak of unknown origin is observed at 0.8 K in the specific heat and magnetic susceptibility, suggesting the possibility of antiferromagnetic order. We present neutron diffraction data from polycrystalline samples which do not show any sign of magnetic scattering below 0.8 K. In addition, we present inelastic neutron scattering data from a single crystal sample which is consistent with the 1.2 K energy scale for Kondo spin fluctuations determined from specific heat measurements.Comment: 4 pages, 2 figures, submitted to J. Mag. Mag. Mater. for ICM 200

    First-Order Transition to Incommensurate Phase with Broken Lattice Rotation Symmetry in Frustrated Heisenberg Model

    Full text link
    We study a finite-temperature phase transition in the two-dimensional classical Heisenberg model on a triangular lattice with a ferromagnetic nearest-neighbor interaction J1J_1 and an antiferromagnetic third-nearest-neighbor interaction J3J_3 using a Monte Carlo method. Apart from a trivial degeneracy corresponding to O(3) spin rotations,the ground state for J3≠0J_3 \neq 0 has a threefold degeneracy corresponding to 120 degree lattice rotations. We find that this model exhibits a first-order phase transition with the breaking of the threefold symmetry when the interaction ratio is J3/J1=−3J_3/J_1=-3.Comment: 4pages,5figure

    Raman scattering studies of spin, charge, and lattice dynamics in Ca_{2-x}Sr_{x}RuO_{4} (0 =< x < 0.2)

    Full text link
    We use Raman scattering to study spin, charge, and lattice dynamics in various phases of Ca_{2-x}Sr_{x}RuO_{4}. With increasing substitution of Ca by Sr in the range 0 =< x < 0.2, we observe (1) evidence for an increase of the electron-phonon interaction strength, (2) an increased temperature-dependence of the two-magnon energy and linewidth in the antiferromagnetic insulating phase, and (3) evidence for charge gap development, and hysteresis associated with the structural phase change, both of which are indicative of a first-order metal-insulator transition (T_{MI}) and a coexistence of metallic and insulating components for T < T_{MI}

    Modelling the Localized to Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5

    Full text link
    We address the fundamental question of crossover from localized to itinerant state of a paradigmatic heavy fermionmaterial CeIrIn5. The temperature evolution of the one electron spectra and the optical conductivity is predicted from first principles calculation. The buildup of coherence in the form of a dispersive many body feature is followed in detail and its effects on the conduction electrons and optical conductivity of the material is revealed. We find multiple hybridization gaps and link them to the crystal structure of the material. Our theoretical approach explains the multiple peak structures observed in optical experiments and the sensitivity of CeIrIn5 to substitutions of the transition metal element and may provide a microscopic basis for the more phenomenological descriptions currently used to interpret experiments in heavy fermion systems.Comment: 12 pages, 3 figure

    Pressure-Tuned Collapse of the Mott-Like State in Ca_{n+1}Ru_nO_{3n+1} (n=1,2): Raman Spectroscopic Studies

    Full text link
    We report a Raman scattering study of the pressure-induced collapse of the Mott-like phases of Ca_3Ru_2O_7 (T_N=56 K) and Ca_2RuO_4 (T_N=110 K). The pressure-dependence of the phonon and two-magnon excitations in these materials indicate: (i) a pressure-induced collapse of the antiferromagnetic (AF) insulating phase above P* ~ 55 kbar in Ca_3Ru_2O_7 and P* ~ 5-10 kbar in Ca_2RuO_4, reflecting the importance of Ru-O octahedral distortions in stabilizing the AF insulating phase; and (ii) evidence for persistent AF correlations above the critical pressure of Ca_2RuO_4, suggestive of phase separation involving AF insulator and ferromagnetic metal phases.Comment: 3 figure

    Severe Fermi Surface Reconstruction at a Metamagnetic-Transition in Ca2−x_{2-x}Srx_xRuO4_4 (for 0.2≤x≤0.50.2 \leq x \leq 0.5)

    Full text link
    We report an electrical transport study in Ca2−x_{2-x}Srx_{x}RuO4_4 single crystals at high magnetic fields (BB). For x=0.2x =0.2, the Hall constant RxyR_{xy} decreases sharply at an anisotropic metamagnetic (MM) transition reaching its value for Sr2_2RuO4_4 at high fields. A sharp decrease in the AA coefficient of the resistivity T2T^2-term and a change in the structure of the angular magnetoresistance oscillations (AMRO) for BB rotating in the planes, confirms the reconstruction of the Fermi surface (FS). Our observations and LDA calculations indicate a strong dependence of the FS on the Ca concentration and suggest the coexistence of itinerant and localized electronic states in single layered ruthenates.Comment: 5 pages, 4 fig
    • …
    corecore